22902

MATHEMATICS - HIGHER LEVEL - PAPER I (300 marks)

THURSDAY, 6 JUNE - MORNING, 9.30 to 12.00

Attempt SIX QUESTIONS (50 marks each)

Marks may be lost if all your work is not clearly shown or you do not indicate where a calculator has been used.

- 1. (a) Express $\frac{1-\sqrt{2}}{1+\sqrt{2}}$ in the form $a\sqrt{2}-b$, where a, b, ε N.
 - (b) (i) (x + 1) is a factor of $x^3 + 5x^2 + kx 12$.

Find the value of k and the other two factors of the cubic expression.

- (ii) If $x = \sqrt{p} + \frac{1}{\sqrt{p}} + 1$ where p > 0, express $x^2 2x$ in terms of p.
- (c) (i) Make a sketch of the region of the plane represented by

$$y \ge |x|$$
 and $y \le 2 + |x|$.

- (ii) $x^2 px + 1$ is a factor of $ax^3 + bx + c$ where $a \neq 0$. Show $c^2 = a(a - b)$.
- 2. (a) Solve for x, y, z

$$x + y - z = 0$$

$$x - y + z = 4$$

$$x - y - z = -8.$$

(b) (i) Solve for x

$$\frac{2x - 7}{x + 3} < 1, \ x \neq -3.$$

- (ii) If $u_n = n!(n+2)$ show that $(n+1)u_n + (n+1)! = u_{n+1}$.
- Find the quadratic equation with roots $\frac{1}{\alpha}$ and $\frac{1}{\beta}$ given that $\alpha + \beta = 5$ and $\alpha\beta = k$, where $k \neq 0$.

Find the range of values of k for which the equation will have real roots.

3. (a) If
$$A = \begin{pmatrix} 3 & 2 \\ 4 & 3 \end{pmatrix}$$
 and $B = \begin{pmatrix} 3 & 2 \\ -2 & 1 \end{pmatrix}$, find a matrix M such that $M = BA^{-1}$.

(b)
$$P(z) = (z-2)(z^2-10z+28)$$
.

- (i) Plot on an Argand diagram the solution set of P(z) = 0.
- (ii) Verify that the three points form an equilateral triangle.

(c) (i)
$$z_1 = 2\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right) \text{ and } z_2 = 3\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)$$
where $i^2 = -1$.

Calculate z_1z_2 in the form x + iy where $x, y \in \mathbb{R}$.

(ii)
$$(2+3i)(a+ib) = -1+5i$$
. Express $a+ib$ in the form $r(\cos \theta + i \sin \theta)$ and hence, or otherwise, calculate $(a+ib)^{11}$.

4. (a) Find S_n the sum of n terms, of the geometric series

$$2 + \frac{2}{3} + \frac{2}{3^2} + \dots + \frac{2}{3^{n-1}}$$

If $S_n = \frac{242}{81}$, find the value of n.

(b) (i) Show that
$$\frac{1}{\sqrt{n+1}+\sqrt{n}}$$
 is equal to $\sqrt{n+1}-\sqrt{n}$.

(ii) If
$$u_n = \frac{1}{\sqrt{n+1} + \sqrt{n}}$$
 find an expression for the sum of the first *n* terms in terms of *n*.

(c) $u_1, u_2, u_3, \dots u_n$ is a sequence, where $u_n = 1 + 2 + 3 + \dots + n$.

(i) Show
$$u_n = \frac{n}{2} (n + 1)$$
.

(ii) Express
$$u_n - u_{n-1}$$
 in terms of n .

(iii) Show
$$u_n + u_{n-1} = n^2$$
.

(iv) Find
$$u_n^2 - u_{n-1}^2$$
.

Hence, show that

$$\sum_{1}^{n} \left(u_{n}^{2} - u_{n-1}^{2} \right) = 1 + 2^{3} + 3^{3} + \dots + n^{3} \text{ where } u_{0} = 0.$$

5. (a) Solve the simultaneous equations

$$\log (x + y) = 2 \log x$$

 $\log y = \log 2 + \log (x - 1)$ where $x > 1, y > 0$.

(b) (i) Write the binomial expansion of
$$(a + b)^4$$
 in ascending powers of b.

Find
$$\left(x + \frac{1}{x}\right)^4 - \left(x - \frac{1}{x}\right)^4$$
 in its simplest form.

- (ii) Write u_{r+1} , the general term of the binomial expansion of $(3 + 2x)^n$ in terms of x, r and n.

 If the coefficients of x^5 and x^6 are equal, find the value of n.
- (c) Prove by induction that if $y = x^n$, then $\frac{dy}{dx} = nx^{n-1}$, $n \in N_0$.

6. (a) Differentiate

(i)
$$\frac{2x}{x+1}$$
 (ii) $4e^{2x+1}$

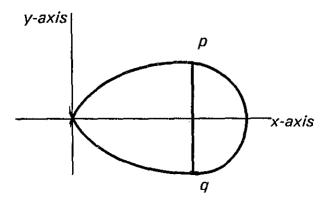
(b) (i) Find
$$\frac{dy}{dx}$$
 if $y = \ln \sqrt{x^2 + 1}$.

- (ii) Take $x_1 = 1$ as the first approximation of a real root of the equation $x^3 2 = 0$. Find, using the Newton-Raphson method, x_2 and x_3 the second and third approximations. Write your answers as fractions.
- (c) (i) $x = a (\theta + \sin \theta)$; $y = a(1 \cos \theta)$ where a is a constant.

Show

$$1 + \left(\frac{dy}{dx}\right)^2 = \sec^2 \frac{\theta}{2}$$

(ii) [pq] is a chord of the loop of the curve $y^2 = x^2 (6 - x)$ so that the chord is parallel to the y-axis. Calculate the maximum value of [pq].



Page 3 of 4

- 7. (a) Find from first principles the derivative of x^2 with respect to x.
 - (b) The function f is defined

$$f: x \to (x-4)\{(x-3)^2+4\}.$$

Find

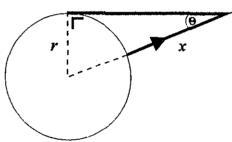
- (i) f(3)
- (ii) the derivative with respect to x of the function at x = 3
- (iii) the equation of the tangent at (3, f(3)).

Show that the tangent and the graph of $x \rightarrow f(x)$ will both intersect the x-axis at the same point.

- Given tan y = x, show $\frac{dy}{dx} = \frac{1}{1 + \tan^2 y}$ and hence, find $\frac{d}{dx} \tan^{-1} x$.
 - (ii) An astronaut is at a height x km above the earth, as shown. He moves vertically away from the earth's surface at a velocity $\frac{dx}{dt}$ of $\frac{r}{5}$ km/h where r is the length of the earth's radius. He observes the angle θ as shown.

Express x in terms of r and θ .

Hence find $\frac{d\theta}{dt}$ when x = r.



(a) Find (i)
$$\int \frac{1}{x^2} dx$$
 (ii) $\int (2x-1)^2 dx$.

- (b) Evaluate (i) $\int_{0}^{2} \frac{dt}{\sqrt{4-t^2}}$ (ii) $\int_{0}^{\frac{\pi}{3}} \sin 2\theta \cos \theta \ d\theta$.
- (c) (i) Calculate $\int_{0}^{\ln\sqrt{3}} \frac{e^{x}}{1 + e^{2x}} dx$ to three places of decimals.
 - (ii) A is the area between the curve $y = x^n$, the x-axis and the lines x = a, x = b.

Calculate the area A in terms of a and b.

B is the area between the same part of the curve and the y-axis.

Determine the ratio

 a^n a^n a a b x-axis

y-axis

Area B : Area A.

Page 4 of 4