Coimisiún na Scrúduithe Stáit
State Examinations Commission

LEAVING CERTIFICATE EXAMINATION, 2007

MATHEMATICS — HIGHER LEVEL

PAPER 1 (300 marks)

THURSDAY, 7 JUNE – MORNING, 9:30 to 12:00

Attempt SIX QUESTIONS (50 marks each).

WARNING: Marks will be lost if all necessary work is not clearly shown.

Answers should include the appropriate units of measurement, where relevant.
1. (a) Simplify \(\frac{x^2 - xy}{x^2 - y^2} \).

(b) Let \(f(x) = x^2 + (k+1)x - k - 2 \), where \(k \) is a constant.

(i) Find the value of \(k \) for which \(f(x) = 0 \) has equal roots.

(ii) Find, in terms of \(k \), the roots of \(f(x) = 0 \).

(iii) Find the range of values of \(k \) for which both roots are positive.

(c) \(x + p \) is a factor of both \(ax^2 + b \) and \(ax^2 + bx - ac \).

(i) Show that \(p^2 = \frac{-b}{a} \) and that \(p = \frac{-b - ac}{b} \).

(ii) Hence show that \(p^2 + p^3 = c \).

2. (a) Solve the simultaneous equations

\[
\begin{align*}
x + y + z &= 2 \\
2x + y + z &= 3 \\
x - 2y + 2z &= 15.
\end{align*}
\]

(b) \(\alpha \) and \(\beta \) are the roots of the equation \(x^2 - 4x + 6 = 0 \).

(i) Find the value of \(\frac{1}{\alpha} + \frac{1}{\beta} \).

(ii) Find the quadratic equation whose roots are \(\frac{1}{\alpha} \) and \(\frac{1}{\beta} \).

(c) (i) Prove that \(x + \frac{9}{x + 2} \geq 4 \), where \(x + 2 > 0 \).

(ii) Prove that \(x + \frac{9}{x + a} \geq 6 - a \), where \(x + a > 0 \).
3. \(\text{(a)} \) Let \(A = \begin{pmatrix} \frac{1}{2} & \frac{1}{4} \\ 3 & \frac{3}{4} \end{pmatrix} \). Find \(A^2 - 2A \).

\(\text{(b)} \) Let \(z = -1 + i \), where \(i^2 = -1 \).

(i) Use De Moivre’s theorem to evaluate \(z^5 \) and \(z^9 \).

(ii) Show that \(z^5 + z^9 = 12z \).

(c) \(\text{(i)} \) Find the two complex numbers \(a + bi \) for which \((a + bi)^2 = 15 + 8i \).

(ii) Solve the equation \(iz^2 + (2 - 3i)z + (-5 + 5i) = 0 \).

4. \(\text{(a)} \) Show that \(\binom{n}{1} + \binom{n}{2} = \binom{n+1}{2} \) for all natural numbers \(n \geq 2 \).

\(\text{(b)} \) \(u_1 = 5 \) and \(u_{n+1} = \frac{n}{n+1}u_n \) for all \(n \geq 1, n \in \mathbb{N} \).

(i) Write down the value of each of \(u_2, u_3, \) and \(u_4 \).

(ii) Hence, by inspection, write an expression for \(u_n \) in terms of \(n \).

(iii) Use induction to justify your answer for part (ii).

\(\text{(c)} \) The sum of the first \(n \) terms of a series is given by \(S_n = n^2 \log_e 3 \).

(i) Find the \(n^{th} \) term and prove that the series is arithmetic.

(ii) How many of the terms of the series are less than \(12 \log_e 27 \)?
5. (a) Plot, on the number line, the values of \(x \) that satisfy the inequality \(|x + 1| \leq 2 \), where \(x \in \mathbb{Z} \).

(b) In the expansion of \(\left(2x - \frac{1}{x^2} \right)^9 \),

(i) find the general term

(ii) find the value of the term independent of \(x \).

(c) The \(n^{\text{th}} \) term of a series is given by \(nx^n \), where \(|x| < 1\).

(i) Find an expression for \(S_n \), the sum of the first \(n \) terms of the series.

(ii) Hence, find the sum to infinity of the series.

6. (a) Differentiate \(\frac{x^2 - 1}{x^2 + 1} \) with respect to \(x \).

(b) (i) Differentiate \(\frac{1}{x} \) with respect to \(x \) from first principles.

(ii) Find the equation of the tangent to \(y = \frac{1}{x} \) at the point \((2, \frac{1}{2}) \).

(c) Let \(f(x) = \tan^{-1} \frac{x}{2} \) and \(g(x) = \tan^{-1} \frac{2}{x} \), for \(x > 0 \).

(i) Find \(f''(x) \) and \(g'(x) \).

(ii) Hence, show that \(f(x) + g(x) \) is constant.

(iii) Find the value of \(f(x) + g(x) \).
7. (a) Taking 1 as the first approximation of a root of \(x^3 + 2x - 4 = 0 \), use the Newton-Raphson method to calculate the second approximation of this root.

(b) (i) Find the equation of the tangent to the curve \(3x^2 + y^2 = 28 \) at the point \((2, -4)\).

(ii) \(x = e^t \cos t \) and \(y = e^t \sin t \). Show that \(\frac{dy}{dx} = \frac{x + y}{x - y} \).

(c) \(f(x) = \log_e 3x - 3x \), where \(x > 0 \).

(i) Show that \((\frac{1}{3}, -1)\) is a local maximum point of \(f(x) \).

(ii) Deduce that the graph of \(f(x) \) does not intersect the \(x \)-axis.

8. (a) Find (i) \(\int x^3 \, dx \) (ii) \(\int \frac{1}{x^3} \, dx \).

(b) (i) Evaluate \(\int_0^4 \frac{1}{x} \sqrt{x^2 + 9} \, dx \).

(ii) \(f \) is a function such that \(f'(x) = 6 - \sin x \) and \(f\left(\frac{\pi}{3}\right) = 2\pi \).

Find \(f(x) \).

(c) The line \(2x - y - 10 = 0 \) is a tangent to the curve \(y = x^2 - 9 \), as shown.

The shaded region is bounded by the line, the curve and the \(x \)-axis.

Calculate the area of this region.