Coimisiún na Scrúduithe Stáit
State Examinations Commission

LEAVING CERTIFICATE EXAMINATION, 2010

MATHEMATICS – ORDINARY LEVEL

PAPER 1 (300 marks)

FRIDAY, 11 JUNE – AFTERNOON, 2:00 to 4:30

Attempt SIX QUESTIONS (50 marks each)

WARNING: Marks will be lost if all necessary work is not clearly shown.

Answers should include the appropriate units of measurement, where relevant.
1. (a) Express 40 metres as a fraction of 1 kilometre. Give your answer in its simplest form.

(b) (i) Calculate the value of
\[
\frac{57.6 + 80.44}{1.3 \times 10^4}
\]
and write your answer correct to three decimal places.

(ii) An importer buys an item for £221 sterling when the rate of exchange is €1 = £0.85 sterling.

He sells it at a profit of 14% of the cost price.

Calculate, in euro, the price for which he sells the item.

(c) (i) What sum of money invested at 5% per annum compound interest will amount to €8682 in 3 years?

Give your answer correct to the nearest euro.

(ii) A sum of €P was invested at r % per annum compound interest.

The interest for the first year was €220.

The interest for the second year was €228.80.

Calculate r and P.

2. (a) Find the values of x which satisfy
\[
2(3 + 4x) \leq 22, \quad \text{where } x \in \mathbb{N}.
\]

(b) Solve for x and y
\[
2x - y = 1
\]
\[
x^2 - xy = -6.
\]

(c) (i) Show, by division, that 3x + 1 is a factor of \(3x^3 + 4x^2 - 89x - 30\).

(ii) Hence, or otherwise, solve the equation
\[
3x^3 + 4x^2 - 89x - 30 = 0.
\]
3. (a) Given that \(3(b + a) = t(6 - a)\),
calculate the value of \(a\) when \(t = 3\) and \(b = -4\).

(b) Solve for \(x\)
\[
5(x + 1)^2 = 2(x + 1) + 5.
\]
Give your answer correct to two decimal places.

(c) (i) \(2 + \sqrt{3}\) is a root of the equation \(x^2 - 4x + c = 0\), where \(c\) is a real number.
Find the value of \(c\) and write down the other root.

(ii) The equation \(x^2 + 10x + k = 0\) has equal roots.
Find the value of the real number \(k\) and write down the value of each root.

4. (a) Given that \(i^2 = -1\), simplify
\[
(4 + 2i)(3 - i)
\]
and write your answer in the form \(x + yi\), where \(x, y \in \mathbb{R}\).

(b) Let \(u = 4 + 3i\) and \(w = 6 - 8i\).

(i) Find the value of the real number \(k\) such that \(|u| = k \cdot |w|\).

(ii) Express \(\frac{w}{u}\) in the form \(x + yi\).

(c) Let \(z = a + bi\), where \(a, b \in \mathbb{R}\).
Find the value of \(a\) and the value of \(b\) for which
\[
3z - 10i = (2 - 3i)z.
\]
5. (a) The first term of a geometric sequence is 4 and the common ratio is 0.5. Write down the first five terms of the sequence.

(b) In an arithmetic series, the first term is 6 and the fifth term is 22.

(i) Find \(d \), the common difference.

(ii) Find \(T_{14} \), the fourteenth term.

(iii) Find \(S_{20} \), the sum of the first twenty terms.

(c) In a geometric series, the fourth term is 9 and the seventh term is 243.

(i) Find \(r \), the common ratio.

(ii) Find \(a \), the first term.

(iii) Find \(S_{8} \), the sum of the first eight terms.

6. (a) Let \(h(x) = x^2 + 1 \), where \(x \in \mathbb{R} \).

Write down a value of \(x \) for which \(h(x) = 50 \).

(b) Let \(g(x) = \frac{1}{x - 2} \), where \(x \in \mathbb{R} \) and \(x \neq 2 \).

(i) Copy and complete the following table:

<table>
<thead>
<tr>
<th>(x)</th>
<th>0</th>
<th>1</th>
<th>1.5</th>
<th>1.75</th>
<th>2.25</th>
<th>2.5</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(g(x))</td>
<td></td>
<td>-1</td>
<td>-4</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(ii) Draw the graph of the function \(g \) in the domain \(0 \leq x \leq 4 \).

(c) Let \(f(x) = x - \frac{5}{x} \), where \(x \in \mathbb{R} \) and \(x \neq 0 \).

(i) Find \(f'(x) \), the derivative of \(f(x) \).

(ii) Find the co-ordinates of the two points at which the tangent to the curve \(y = f(x) \) is parallel to the line \(y = 6x \).
7. (a) Differentiate \(x^2 - 6x + 1 \) with respect to \(x \).

(b) (i) Differentiate \(5 - 3x \) with respect to \(x \) from first principles.

(ii) Given that \(y = (x^2 - 4)(3x - 1) \), find the value of \(\frac{dy}{dx} \) when \(x = 2 \).

(c) The speed, \(v \), of an object at time \(t \) is given by
\[
v = 96 + 40t - 4t^2
\]
where \(t \) is in seconds and \(v \) is in metres per second.

(i) At what times will the speed of the object be 96 metres per second?

(ii) What will the acceleration of the object be at \(t = 2.5 \) seconds?

(iii) At what value of \(t \) will the acceleration become negative?

8. Let \(f(x) = x^3 - 3x + 1 \), where \(x \in \mathbb{R} \).

(i) Find \(f(-3), f(-2), f(0), f(2) \) and \(f(3) \).

(ii) Find \(f'(x) \), the derivative of \(f(x) \).

(iii) Find the co-ordinates of the local maximum point and of the local minimum point of the curve \(y = f(x) \).

(iv) Draw the graph of the function \(f \) in the domain \(-3 \leq x \leq 3\).

(v) Find the range of values of \(k \) for which the equation
\[
x^3 - 3x + 1 = k
\]
has three real solutions (roots).
Blank Page