Note to teachers and students on the use of published marking schemes

Marking schemes published by the State Examinations Commission are not intended to be standalone documents. They are an essential resource for examiners who receive training in the correct interpretation and application of the scheme. This training involves, among other things, marking samples of student work and discussing the marks awarded, so as to clarify the correct application of the scheme. The work of examiners is subsequently monitored by Advising Examiners to ensure consistent and accurate application of the marking scheme. This process is overseen by the Chief Examiner, usually assisted by a Chief Advising Examiner. The Chief Examiner is the final authority regarding whether or not the marking scheme has been correctly applied to any piece of candidate work.

Marking schemes are working documents. While a draft marking scheme is prepared in advance of the examination, the scheme is not finalised until examiners have applied it to candidates’ work and the feedback from all examiners has been collated and considered in light of the full range of responses of candidates, the overall level of difficulty of the examination and the need to maintain consistency in standards from year to year. This published document contains the finalised scheme, as it was applied to all candidates’ work.

In the case of marking schemes that include model solutions or answers, it should be noted that these are not intended to be exhaustive. Variations and alternatives may also be acceptable. Examiners must consider all answers on their merits, and will have consulted with their Advising Examiners when in doubt.

Future Marking Schemes

Assumptions about future marking schemes on the basis of past schemes should be avoided. While the underlying assessment principles remain the same, the details of the marking of a particular type of question may change in the context of the contribution of that question to the overall examination in a given year. The Chief Examiner in any given year has the responsibility to determine how best to ensure the fair and accurate assessment of candidates’ work and to ensure consistency in the standard of the assessment from year to year. Accordingly, aspects of the structure, detail and application of the marking scheme for a particular examination are subject to change from one year to the next without notice.
Contents

Paper 1

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solutions and marking scheme</td>
<td>2</td>
</tr>
<tr>
<td>Structure of the marking scheme</td>
<td>3</td>
</tr>
<tr>
<td>Summary of mark allocations and scales to be applied</td>
<td>4</td>
</tr>
<tr>
<td>Model solutions and detailed marking notes</td>
<td>5</td>
</tr>
</tbody>
</table>

Paper 2

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solutions and marking scheme</td>
<td>19</td>
</tr>
<tr>
<td>Structure of the marking scheme</td>
<td>20</td>
</tr>
<tr>
<td>Summary of mark allocations and scales to be applied</td>
<td>21</td>
</tr>
<tr>
<td>Model solutions and detailed marking notes</td>
<td>22</td>
</tr>
</tbody>
</table>

Marcanna breise as ucht freagraítrí Ghaeilge ... 39
Marking Scheme – Paper 1, Section A and Section B

Structure of the marking scheme
Candidate responses are marked according to different scales, depending on the types of response anticipated. Scales labelled A divide candidate responses into two categories (correct and incorrect). Scales labelled B divide responses into three categories (correct, partially correct, and incorrect), and so on. The scales and the marks that they generate are summarised in this table:

<table>
<thead>
<tr>
<th>Scale label</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>No of categories</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>5 mark scales</td>
<td>0, 5</td>
<td>0, 2, 5</td>
<td>0, 2, 4, 5</td>
<td>0, 2, 3, 4, 5</td>
<td></td>
</tr>
<tr>
<td>10 mark scales</td>
<td>0, 10</td>
<td>0, 3, 10</td>
<td>0, 2, 5, 10</td>
<td>0, 2, 4, 6, 10</td>
<td></td>
</tr>
<tr>
<td>15 mark scales</td>
<td>0, 15</td>
<td>0, 7, 15</td>
<td>0, 3, 7, 15</td>
<td>0, 4, 7, 11, 15</td>
<td></td>
</tr>
<tr>
<td>20 mark scales</td>
<td>0, 20</td>
<td>0, 10, 20</td>
<td>0, 7, 13, 20</td>
<td>0, 5, 10, 15, 20</td>
<td></td>
</tr>
<tr>
<td>25 mark scales</td>
<td>0, 25</td>
<td>0, 12, 25</td>
<td>0, 8, 17, 25</td>
<td>0, 6, 12, 19, 25</td>
<td>0, 5, 10, 15, 20, 25</td>
</tr>
</tbody>
</table>

A general descriptor of each point on each scale is given below. More specific directions in relation to interpreting the scales in the context of each question are given in the scheme, where necessary.

Marking scales – level descriptors
A-scales (two categories)
- incorrect response
- correct response

B-scales (three categories)
- response of no substantial merit
- partially correct response
- correct response

C-scales (four categories)
- response of no substantial merit
- response with some merit
- almost correct response
- correct response

D-scales (five categories)
- response of no substantial merit
- response with some merit
- response about half-right
- almost correct response
- correct response

E-scales (six categories)
- response of no substantial merit
- response with some merit
- response almost half-right
- response more than half-right
- almost correct response
- correct response

In certain cases, typically involving incorrect rounding, omission of units, a misreading that does not oversimplify the work or an arithmetical error that does not oversimplify the work, a mark that is one mark below the full-credit mark may also be awarded. Thus, for example, in scale 10C, 9 marks may be awarded. Throughout the scheme indicate by use of * where an arithmetic error occurs.
Summary of mark allocations and scales to be applied

Section A

<table>
<thead>
<tr>
<th>Question 1</th>
<th>Mark Allocation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>10C</td>
</tr>
<tr>
<td>(b)</td>
<td>5A</td>
</tr>
<tr>
<td>(c)</td>
<td>10C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Question 2</th>
<th>Mark Allocation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>5C</td>
</tr>
<tr>
<td>(b)</td>
<td>5C</td>
</tr>
<tr>
<td>(c)</td>
<td>5A</td>
</tr>
<tr>
<td>(d)</td>
<td>10D</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Question 3</th>
<th>Mark Allocation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>5C</td>
</tr>
<tr>
<td>(b)</td>
<td>10B</td>
</tr>
<tr>
<td>(c)</td>
<td>10C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Question 4</th>
<th>Mark Allocation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>5B</td>
</tr>
<tr>
<td>(b)</td>
<td>5B</td>
</tr>
<tr>
<td>(c)</td>
<td>10D</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Question 5</th>
<th>Mark Allocation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>5C</td>
</tr>
<tr>
<td>(b)</td>
<td>15C</td>
</tr>
<tr>
<td>(c)</td>
<td>5C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Question 6</th>
<th>Mark Allocation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>5C</td>
</tr>
<tr>
<td>(b)</td>
<td>10C</td>
</tr>
<tr>
<td>(c)</td>
<td>10C</td>
</tr>
</tbody>
</table>

Section B

<table>
<thead>
<tr>
<th>Question 7</th>
<th>Mark Allocation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>10D</td>
</tr>
<tr>
<td>(b)</td>
<td>10D</td>
</tr>
<tr>
<td>(c)</td>
<td>5A</td>
</tr>
<tr>
<td>(d)</td>
<td>10C</td>
</tr>
<tr>
<td>(e)(i)</td>
<td>10C</td>
</tr>
<tr>
<td>(ii)</td>
<td>10C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Question 8</th>
<th>Mark Allocation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>5B</td>
</tr>
<tr>
<td>(b)(i)</td>
<td>5D</td>
</tr>
<tr>
<td>(ii)</td>
<td>5D</td>
</tr>
<tr>
<td>(c)</td>
<td>5C</td>
</tr>
<tr>
<td>(d)(i)</td>
<td>15C</td>
</tr>
<tr>
<td>(ii)</td>
<td>5B</td>
</tr>
<tr>
<td>(iii)</td>
<td>5C</td>
</tr>
<tr>
<td>(iv)</td>
<td>5B</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Question 9</th>
<th>Mark Allocation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)(i)</td>
<td>10D</td>
</tr>
<tr>
<td>(ii)</td>
<td>15D</td>
</tr>
<tr>
<td>(b)</td>
<td>5B</td>
</tr>
<tr>
<td>(c)</td>
<td>5B</td>
</tr>
<tr>
<td>(d)</td>
<td>10D</td>
</tr>
</tbody>
</table>
Model Solutions & Marking Detailed Notes

Note: The model solutions for each question are not intended to be exhaustive – there may be other correct solutions. Any Examiner unsure of the validity of the approach adopted by a particular candidate to a particular question should contact his / her Advising Examiner.

<table>
<thead>
<tr>
<th>Q1</th>
<th>Model Solution – 25 Marks</th>
<th>Marking Notes</th>
</tr>
</thead>
</table>
| (a) | 5 × 2 = 10
 28 − 10 = 18
 18 ÷ 2 = 9
 €9 per hour | Scale 10C (0, 2, 5, 10)
Low Partial Credit
• Any use of 2, 5 or 28
High Partial Credit
• 18 calculated |
| (b) | \(w = 9h + 2d \) | Scale 5A (0, 5) |
| (c) | 9(6)+12(2)+5(13·5)+2d = 161·50
 145·5 + 2d = 161·50
 2d = 16
 d = 8 | Scale 10C (0, 2, 5, 10)
Low Partial Credit
• 9(6) or 12(2) or 78 formulated calculated or used
• 13·5 written
High Partial Credit
• 83·5 and/or 67·5 |
<table>
<thead>
<tr>
<th>Q2</th>
<th>Model Solution – 25 Marks</th>
<th>Marking Notes</th>
</tr>
</thead>
</table>
| (a) | \[z_3 = 1 + 3i + 2(2 - i) \]
\[z_3 = 5 + i \] | Scale 5C (0, 2, 4, 5)
Low Partial Credit
- Any correct substitution
High Partial Credit
- Correct multiplication |
| (b) | ![Graph](image) | Scale 5C (0, 2, 4, 5)
Low Partial Credit
- One Point correctly plotted
- 2 points correctly plotted but without labels
High Partial Credit
- 2 points correctly plotted and labelled
- 3 points correctly plotted without labels
- Mixes up real and imaginary axes with label of 3 correct points |
| (c) | | Scale 5A (0, 5)
\[|-3 - 2i| = \sqrt{13} \]
\[|3 + 2i| = \sqrt{13} \] |
| (d) | \[w = \frac{(1 + 3i)(2 + i)}{(2 - i)(2 + i)} \]
\[w = \frac{2 + i + 6i + 3i^2}{4 + 2i - 2i - i^2} \]
\[w = -1 + 7i \]
\[w = -\frac{1}{5} + \frac{7}{5}i \] | Scale 10D (0, 2, 4, 6, 10)
Low Partial Credit
- Any correct substitution
Mid Partial Credit
- Conjugate identified
- Some multiplication above and below, even if by wrong conjugate
High Partial Credit
- multiply out correctly |
<table>
<thead>
<tr>
<th>Q3</th>
<th>Model Solution – 25 Marks</th>
<th>Marking Notes</th>
</tr>
</thead>
</table>
| (a) | \[3x - 21 + 5x - 20 = 15 \]
\[8x = 56\]
\[x = 7\] | Scale 5C (0, 2, 4, 5)
Low Partial Credit
- Any correct multiplication
- Correct answer no work
High Partial Credit
- Both multiplications done correctly and fails to finish
- Error in expanding brackets and finishes correctly |
| (b) | \[4a + 3b = -3\]
\[5a - 2b = 25\]
\[8a + 6b = -6\]
\[15a - 6b = 75\]
\[23a = 69\]
\[a = 3\]
\[b = -5\] | Scale 10B (0, 3, 10)
Partial Credit
- Some correct work in solving |
| (c) | \[4x - 6 + 6x < 25\]
\[10x < 31\]
\[x < 3\frac{1}{10}\]
\[\{1, 2, 3\}\] | Scale 10C (0, 2, 5, 10)
Low Partial Credit
- Any correct step
- Correct answer without work
High Partial Credit
- Solves for \(x\)
- Error in multiplication but finishes correctly

Note: accept \(\{0, 1, 2, 3\}\)
<table>
<thead>
<tr>
<th>Q4</th>
<th>Model Solution – 25 Marks</th>
<th>Marking Notes</th>
</tr>
</thead>
</table>
| (a) | $x = 0$
$y = 7$ | Scale 5B (0, 2, 5)
Partial Credit
• $x = 0$, written
• Zero correctly substituted into equation |
| (b) | $1 + 1 - 2 + 7 = 7$
$7 = 7$ | Scale 5B (0, 2, 5)
Partial Credit
• Any correct substitution |
| (c) (i) | $f'(x) = 3x^2 + 2x - 2$
at $x = 1$
$f''(x) = 3(1)^2 + 2(1) - 2$
m = 3 | Scale 10D (0, 2, 4, 6, 10)
Low Partial Credit
• Any correct differentiation

Mid Partial Credit
• Fully correct differentiation

High Partial Credit
• Correct substitution for slope |
| (c) (ii) | $y - 7 = 3(x - 1)$
or
$y = 3x + 4$
or
$3x - y + 4 = 0$ | Scale 5B (0, 2, 5)
Partial Credit
• Shows $m = 3$
• Correct equation of a line formula
• Any correct substitution |
<table>
<thead>
<tr>
<th>Q5</th>
<th>Model Solution – 25 Marks</th>
<th>Marking Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(i)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Term Number</td>
<td>Sequence</td>
<td></td>
</tr>
<tr>
<td>U₁</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U₂</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U₃</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U₄</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U₅</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U₆</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>U₇</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>U₈</td>
<td>69</td>
<td></td>
</tr>
</tbody>
</table>

Scale 5C (0, 2, 4, 5)

Low Partial Credit
- One or two correct terms

High Partial credit
- 3 terms correct but fails to show quadratic

(b) |
| U₁: 1 + b + c = 13
| U₂: 4 + 2b + c = 15

Scale 15C (0, 3, 7, 15))

Low Partial Credit
- Some relevant substitution into \(Uₙ \)
- Derives one correct equation

High Partial Credit
- Derives two correct equations
\(a = 12 \)
\(d = 2 \)

\[
T_n = 12 + 2(n - 1) \\
\text{or} \\
T_n = 10 + 2n \\
\]

\[
T_{30} = 10 + 2(30) = 70 \\
\]

Scale 5C (0, 2, 4, 5)

Low Partial Credit
- \(a \) or \(d \) identified
- Writes \(T_n = a + (n - 1)d \)

High Partial Credit
- \(T_n \) correct and stops
- Finds \(T_{30} \) correctly using list method, without finding \(T_n \)
<table>
<thead>
<tr>
<th>Q6</th>
<th>Model Solution – 25 Marks</th>
<th>Marking Notes</th>
</tr>
</thead>
</table>
| (a) | 1300 × 0.2 = 260
250 × 0.4 = 100
260 + 100 = 360
360 − 126 = 234 | Scale 5C (0, 2, 4, 5)
Low Partial Credit
• Sets up 20% of 1300
• calculates €250
• Finds €260 or €100

High Partial Credit
• Finds €260 and €100, or finds €360 |
| (b) | \[462\times 0.01 + 214\times 0.03 + 874\times 0.055\]
\[= 4.62 + 6.42 + 48.07\]
\[= 59.11\] | Scale 10C (0, 2, 5, 10)
Low Partial Credit
• Finds one correct amount
• Formulates a % correctly
• Finds €874 or €676

High Partial Credit
• Finds two correct amounts |
| (c) (i) and (c) (ii) | 18 + 234 + 59.11 = 311.11
\[\frac{311.11}{1550} \times \frac{100}{1} = 20.1\%\] | Scale 10C (0, 2, 5, 10)
Low Partial Credit
• €234 or €59.11 written in this section
• Some correct addition for (c)(i)

High Partial Credit
• Correct deductions found, €311.11
• Formulates % correctly for (c)(ii) |
<table>
<thead>
<tr>
<th>Q7</th>
<th>Model Solution – 55 Marks</th>
<th>Marking Notes</th>
</tr>
</thead>
</table>
| (a) | $8000(1.02)(1.03)(1.05) = 8825.04$
Or
$8000(1.02) = 8160$
$8160(1.03) = 8404.8$
$8404.8(1.05) = 8825.04$ | Scale 10D (0, 2, 4, 6, 10)
Low Partial Credit
- Any effort at calculation of interest on €8000 at 2% or 3% or 5%
Mid partial credit
- One correct calculation, €160 or €8160
- Uses simple interest leading to €8800 or €800
High Partial Credit
- Two correct calculations, €244·80 or €8404·80
- Finds correct interest for each year but fails to finish
- Fully correct formulation of amount |
| (b) | $8000(1.037)^3 = 8921.26$
Or
$8000(1.037) = 8296$
$8296(1.037) = 8602.95$
$8602.95(1.037) = 8921.26$ | Scale 10D (0, 2, 4, 6, 10)
Low Partial Credit
- Relevant use of 3·7%
Mid partial credit
- One correct calculation, €296 or €8296
- Use of simple interest leading to €8888, or €888
High Partial Credit
- Two correct calculations, €306·95 or €8602·95
- Finds correct interest for each year but fails to finish
- Fully correct formulation of amount |
| (c) | Might want the flexibility of taking money out before the end.
Or
Choose the one that gives the most money | Scale 5A (0, 5) |
| (d) | $8000(1 + \frac{x}{100})^3 = 9000$
$1 + \frac{x}{100} = \sqrt[3]{\frac{9}{8}}$
$x = 4\%$ | Scale 10C (0, 2, 5, 10)
Low Partial Credit
- At least one correct substitution
- Correct formula
- Correct answer no work
- $9000 - 8000 = 1000$
High Partial Credit
- Fully correct substitution into formula but fails to finish |
(e) (i)

\[v = 8000 + 36(12) - 1.2(12)^2 \]
\[v = 8259.20 \]

Scale 10C (0, 2, 5, 10)

Low Partial Credit
- Any correct substitution into formula

High Partial Credit
- Fully correct substitution into formula but fails to finish
- Subs \(t = 1 \) giving answer of 8034.80

(e) (ii)

\[\frac{259.20}{8000} \times 100 = 3.24 \]
Rate = 3.24

Or

\[\frac{8259.20}{8000} = 1.0324 \]
Rate = 3.24

Scale 10C (0, 2, 5, 10)

Low Partial Credit
- Brings down interest or amount from (e)(i)
- Relevant work

High Partial Credit
- Formulates correctly
Q8 Model Solution – 50 Marks

(a)

\[2x + 2y = 21 \]
\[x + y = 10.5 \]
\[y = 10.5 - x \]

Partial Credit
- Some correct work on perimeter
- Relevant work on diagram

(b) (i)

\[
\begin{array}{cccccccccc}
 x & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
 y & 10.5 & 9.5 & 8.5 & 7.5 & 6.5 & 5.5 & 4.5 & 3.5 & 2.5 & 1.5 & 0.5 \\
 A (m^2) & 0 & 9.5 & 17 & 22.5 & 26 & 27.5 & 27 & 24.5 & 20 & 13.5 & 5 \\
\end{array}
\]

Partial Credit
- Some correct work on perimeter
- Relevant work on diagram

(b) (ii)

Low Partial Credit
- Relevant calculations without any correct entry
- 1, 2, 3 or 4 correct entries to table (y or A)

Mid Partial Credit
- 5 or 6 correct pairs of entries (y and A) or full y line correct

High Partial Credit
- 7, 8 or 9 correct pairs of entries (y and A)
<table>
<thead>
<tr>
<th>(c)</th>
<th></th>
<th>Scale 5C (0, 2, 4, 5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum area</td>
<td>$27.5 \leq A \leq 28$</td>
<td>Low Partial Credit</td>
</tr>
<tr>
<td>x value</td>
<td>$5 \leq X \leq 5.5$</td>
<td>• Maximum area identified from graph</td>
</tr>
<tr>
<td>y value</td>
<td>$5.5 \geq Y \geq 5$</td>
<td>High Partial Credit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Area and one corresponding value</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(d) (i)</th>
<th></th>
<th>Scale 15C (0, 3, 7, 15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A = xy$</td>
<td></td>
<td>Low Partial Credit</td>
</tr>
<tr>
<td>$A = x(10.5 - x)$</td>
<td></td>
<td>• Relevant area formula</td>
</tr>
<tr>
<td>$A = 10.5x - x^2$</td>
<td></td>
<td>High Partial Credit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Correct substitution into area formula</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(d) (ii)</th>
<th></th>
<th>Scale 5B(0, 2, 5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{dA}{dx} = 10.5 - 2x$</td>
<td>Partial Credit</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Any correct differentiation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(d) (iii)</th>
<th></th>
<th>Scale 5C (0, 2, 4, 5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$10.5 - 2x = 0$</td>
<td>Note: Must have calculus in (d)(ii) to get any marks in this section</td>
<td></td>
</tr>
<tr>
<td>$x = 5.25$</td>
<td>Low Partial Credit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Any use of answer to (d)(ii)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>High Partial Credit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Lets their derivative = 0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(d) (iv)</th>
<th></th>
<th>Scale 5B (0, 2, 5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A = xy$</td>
<td>Partial Credit</td>
<td></td>
</tr>
<tr>
<td>$A = 5.25 \times 5.25$</td>
<td>• Any substitution into area formula or equation given in (d)(i)</td>
<td></td>
</tr>
<tr>
<td>$A = 27.56$</td>
<td>• Writes area formula</td>
<td></td>
</tr>
<tr>
<td>Or</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$A = 10.5(5.25) - (5.25)^2$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$55.125 - 27.5625$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$A = 27.56$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Q9 Model Solution – 45 Marks

<table>
<thead>
<tr>
<th>Time (hours)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Company A charge $A(h)$ (€)</td>
<td>30</td>
<td>39.5</td>
<td>49</td>
<td>58.5</td>
<td>68</td>
<td>77.5</td>
</tr>
<tr>
<td>Company B charge $B(h)$ (€)</td>
<td>10</td>
<td>17.4</td>
<td>30.28</td>
<td>52.68</td>
<td>91.66</td>
<td>159.49</td>
</tr>
</tbody>
</table>

Marking Notes

- **Scale 10D (0, 2, 4, 6, 10)**
 - **Low Partial Credit**
 - relevant calculations
 - 1, 2, 3 or 4 correct entries into table

- **Mid Partial Credit**
 - 5 or 6 correct entries

- **High Partial Credit**
 - 7, 8 or 9 correct entries
(a)
(ii)

Scale 15D (0, 4, 7, 11, 15)

Low Partial Credit
- 1, 2, 3 or 4 correct plots

Mid Partial Credit
- 5 to 11 correct plots

High Partial Credit
- All plots correct but no joining or incorrect joining
- 9, 10 or 11 points plotted correct and joined correctly
| (b) | \(B = €40 \)
| | \(A = €52 \)
| | B is cheaper (from graph)
| | Scale 5B (0, 2, 5)
| | Partial Credit
| | • A or B clearly identified on graph
| | • B given as answer but no reason
| (c) | \(h \approx 3 \cdot 2 \)
| | Scale 5B (0, 2, 5)
| | Partial Credit
| | • Point clearly indicated on graph
| (d) | \(A(6) = 30 + 9.5(6) = 87 \)
| | \(B(6) = 10(1.74)^6 = 277.52 \)
| | Difference = 190.52
| | Scale 10D (0, 2, 4, 6, 10)
| | Low Partial Credit
| | • A(6) or B(6) substituted correctly
| | Mid Partial credit
| | • A(6) or B(6) evaluated correctly
| | High Partial Credit
| | • A(6) and B(6) evaluated correctly

[18]
Leaving Certificate 2016

Model Solutions and Marking Scheme

Mathematics

Ordinary Level

Paper 2
Marking Scheme – Paper 1, Section A and Section B

Structure of the marking scheme
Candidate responses are marked according to different scales, depending on the types of response anticipated. Scales labelled A divide candidate responses into two categories (correct and incorrect). Scales labelled B divide responses into three categories (correct, partially correct, and incorrect), and so on. The scales and the marks that they generate are summarised in this table:

<table>
<thead>
<tr>
<th>Scale label</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>No of categories</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>5 mark scales</td>
<td>0, 5</td>
<td>0, 1, 5</td>
<td>0, 1, 2, 5</td>
<td>0, 2, 3, 4, 5</td>
<td></td>
</tr>
<tr>
<td>10 mark scales</td>
<td></td>
<td>0, 2, 4, 10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 mark scales</td>
<td>0, 4, 15</td>
<td>0, 3, 5, 15</td>
<td>0, 2, 4, 8, 15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 mark scales</td>
<td></td>
<td>0, 5, 10, 20</td>
<td>0, 5, 10, 15, 20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 mark scales</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A general descriptor of each point on each scale is given below. More specific directions in relation to interpreting the scales in the context of each question are given in the scheme, where necessary.

Marking scales – level descriptors

A-scales (two categories)
- incorrect response
- correct response

B-scales (three categories)
- response of no substantial merit
- partially correct response
- correct response

C-scales (four categories)
- response of no substantial merit
- response with some merit
- almost correct response
- correct response

D-scales (five categories)
- response of no substantial merit
- response with some merit
- response about half-right
- almost correct response
- correct response

E-scales (six categories)
- response of no substantial merit
- response with some merit
- response almost half-right
- response more than half-right
- almost correct response
- correct response

In certain cases, typically involving incorrect rounding, omission of units, a misreading that does not oversimplify the work or an arithmetical error that does not oversimplify the work, a mark that is one mark below the full-credit mark may also be awarded. Thus, for example, in Scale 10C, 9 marks may be awarded. Throughout the scheme indicate by use of * where an arithmetical error occurs.
Summary of mark allocations and scales to be applied

Section A

Question 1
(a)(i) 5C
(a)(ii) 5C
(a)(iii) 5C
(b) 10C

Question 2
(a) 5D
(b) 20D

Question 3
(a) 5C
(b) 5C
(c) 10C
(d) 5C

Question 4
(a) 15D
(b) 5C
(c) 5C

Question 5
(a) 15C
(b) 5C
(c) 5C

Question 6
(a)(i)(ii) 5D
(b) 5B
(c) 15C

Section B

Question 7 (55)
(a) 15B
(b)(i) 5B
(b)(ii) 5C
(c) 5C
(d)(i) 5C
(d)(ii) 15C
(d)(iii) 5A

Question 8 (50)
(a) 5B
(b)(i) 5C
(b)(ii) 5C
(c)(i) 5C
(c)(ii) 5C
(c)(iii) 5A
(d) 20C

Question 9 (45)
(a)(i) 5B
(a)(ii) 5B
(b) 5C
(c) 5B
(d) 5D
(e) 20C
Model Solutions & Detailed Marking Notes

Note: The model solutions for each question are not intended to be exhaustive – there may be other correct solutions. Any Examiner unsure of the validity of the approach adopted by a particular candidate to a particular question should contact his / her Advising Examiner.

<table>
<thead>
<tr>
<th>Q1</th>
<th>Model Solution – 25 Marks</th>
<th>Marking Notes</th>
</tr>
</thead>
</table>
| (a) (i) | ![Diagram](image) | Scale 5C(0, 1, 2, 5)
Low Partial Credit:
• Any work of merit.
High Partial Credit:
• One correct/consistent entry calculated or inserted in diagram.
Full Credit:
• Correctly filled in diagram without work. |
| (a) (ii) | \[
\frac{64}{168} \text{ or } \frac{8}{21}
\] | Scale 5C(0, 1, 2, 5)
Low Partial Credit:
• Works with \(64\) or \(168 \neq \#(E), \#(S)\).
High Partial Credit:
• \(\frac{x}{168} (x \neq 64, x < 168)\)
• \(\frac{64}{x} (x \neq 168, x > 64)\) |
| (a) (iii) | \[
\frac{37 + 48}{168} = 50\cdot59 = 50\cdot6\
\] | Scale 5C(0, 1, 2, 5)
Low Partial Credit:
• Works with \(37, 48, 168\) (or consistent).
• \(\frac{1}{\#} \times 100\).
High Partial Credit:
• Works to 85. (or consistent)
• Correct answer without work. |
\[BWV = \frac{1}{2} \times \frac{1}{3} \times \frac{1}{2} = \frac{1}{12} \]

\[SWV = \frac{1}{2} \times \frac{1}{3} \times \frac{1}{2} = \frac{1}{12} \]

\[
= \frac{2}{12} \text{ or } \frac{1}{6}
\]

Scale 10C(0, 2, 4, 10)

Low Partial Credit:
- Any relevant continuation of the tree diagram.
- One probability formulated correctly.
 - e.g. \(\frac{1}{2}\)

High Partial Credit:
- Tree diagram fully correct.
- Probability worked to \(\frac{2}{12}\) correct but tree diagram incomplete.
<table>
<thead>
<tr>
<th>Q2</th>
<th>Model Solution – 25 Marks</th>
<th>Marking Notes</th>
</tr>
</thead>
</table>
| (a) | \[\frac{1}{2} (8)(12) \sin 30° = 24 \text{ cm}^2 \] | Scale 5D(0, 2, 3, 4, 5)
Low Partial Credit:
- Writes correct relevant formula for area of triangle. e.g. \(\frac{1}{2}ab \sin C \)
- Mid Partial Credit:
 - One/Two variables correctly substituted into sine formula.
 - \(h_1 \) calculated.
- *High Partial Credit:*
 - Full correct substitution without calculation.
 - One incorrect or omitted length substitution with area calculated.
 - Incorrect calculator mode but otherwise correct. (once only)
 - Radian = \(-47.42\), Gradian = 21.79.
 - Correct answer without work.
- *No Credit:*
 - Answer as \(\frac{1}{2}(8)(12) \sin(30°) \) without formula.
| (b) | \[7^2 = 5^2 + 3^2 - 2(3)(5) \cos A \]
\[49 - 9 - 25 = -30 \cos A \]
\[\cos A = -\frac{1}{2} \]
\[A = 120° \] | Scale 20D(0, 5, 10, 15, 20)
Low Partial Credit:
- Any work of merit to identify the correct angle required. (Pilot Diagram)
- Writes Cosine Rule correctly.
- Mid Partial Credit:
 - Two variables correctly substituted into correct relevant formula.
- *High Partial Credit:*
 - Fully correct substitution.
 - One incorrect substitution followed by correct calculation.
 - Calculates a different angle correctly.
 - (21.79°, 38.21°)
 - A correct or consistent answer without work.
 - Incorrect calculator mode but otherwise correct. (only once)
 - Radian = 2.09, Gradian = 133.33
 - Correct answer without work.
- *No Credit:*
 - Treats triangle as right angled.

[24]
<table>
<thead>
<tr>
<th>Q3</th>
<th>Model Solution – 25 Marks</th>
<th>Marking Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
\[(x - 2)^2 + (y + 3)^2 = 4^2\] | Scale 5C(0, 1, 2, 5)
Low Partial Credit:
- Identifies correct formula.
- Labels any one of (2, −3) or 4 correctly.
- Works to \(r^2 = 4^2\).
High Partial Credit:
- Answer as \((x - 2)^2 + (y - 3)^2 = 4^2\).
- Substitutes centre or radius correctly into formula. |
| (b) | ![Diagram of a circle with labeled center and radius] | Scale 5C(0, 1, 2, 5)
Low Partial Credit:
- Any work of merit e.g. Marks centre on grid.
High Partial Credit:
- Any TWO of the three components, centre, radius or drawing correct. |
| (c) |
\[(x - 2)^2 + (y + 3)^2 = 4^2\]
\[3 - 2)^2 + (1 + 3)^2\]
\[1 + 16 > 16\]
\[\sqrt{(3 - 2)^2 + (1 + 3)^2} > 4\] | Scale 10C(0, 2, 4, 10)
Low Partial Credit:
- Plots (3,1).
- Identifies correct relevant formula.
- Substitutes (3, 1) into correct/consistent formula.
High Partial Credit:
- \((1 + 16)\) or 17 but no conclusion. (>16)
- \(\sqrt{17}\) but no conclusion. (>4) |
| (d) | \[8 \times 8 = 64 \text{ cm}^2 \] | Scale 5C(0, 1, 2, 5)
Low Partial Credit:
- Drawing on grid. (Any one dimension)

High Partial Credit:
- Identifies correct/consistent square.
- Scale error in dimensions calculated correctly. |
Q4 Model Solution – 25 Marks

(a)

\[
m = \frac{0 - 5}{2 - 4} = \frac{5}{2}
\]

\[
y - 5 = \frac{5}{2}(x - 4)
\]

\[
2y - 10 = 5x - 20
\]

\[
5x - 2y - 10 = 0
\]

- **Scale 15D(0, 2, 4, 8, 15)**
- **Low Partial Credit:**
 - Identifies a correct relevant formula.
- **Mid Partial Credit:**
 - Slope formula with some substitution.
 - Equation of line formula with some substitution.
 - Slope correct and stops.
- **High Partial Credit:**
 - Equation of line formula fully substituted correctly (consistently).

Note:
Accept \((-5x + 2y + 10 = 0, \text{ in any order})\).

(b)

- **Scale 5C(0, 1, 2, 5)**
- **Low Partial Credit:**
 - \(x = 0\) or \(y = 0\) written.
 - Any work of merit working with line \(k\).
- **High Partial Credit:**
 - Finds two correct points but no plots or line on graph.

\[
x = 0,\ y = 4 \Rightarrow (0, 4)
\]

\[
y = 0,\ x = 8 \Rightarrow (8, 0)
\]
(c) **Graphical:**

Scale SC(0, 1, 2, 5)

Low Partial Credit:
- Effort to draw line l.

High Partial Credit:
- l drawn correctly on grid (in this part) and point of intersection marked but not written.

Full Credit:
- $l \cap k = (3, 2\frac{1}{2})$.

Numerical:

\[
5x - 2y - 10 = 0 \\
5(3) - 2y - 10 = 0 \\
15 - 2y - 10 = 0 \\
2y = 5 \\
y = 2\frac{1}{2} \\
x + 2y = 8 \\
3 + 2y = 8 \\
2y = 5 \\
y = 2\frac{1}{2} \\
l \cap k = (3, 2\frac{1}{2})
\]

Algebraic:

\[
x + 2y = 8 \\
5x - 2y = 10 \\
6x = 18 \\
x = 3 \\
y = \frac{5}{2} \\
\left(3, 2\frac{1}{2}\right)
\]

Low Partial Credit:
- Effort at substituting a value of x into equations of one or both lines.

High Partial Credit:
- Uses $x = 3$ to find $y = 2\frac{1}{2}$ in both equations.

Full Credit:
- $l \cap k = (3, 2\frac{1}{2})$.

Low Partial Credit:
- Effort to solve using simultaneous equations.

High Partial Credit:
- x and/or y calculated correctly.
- Writes $l \cap k$ as (y, x).

Full Credit:
- $l \cap k = (3, 2\frac{1}{2})$.
<table>
<thead>
<tr>
<th>Q5</th>
<th>Model Solution – 25 Marks</th>
<th>Marking Notes</th>
</tr>
</thead>
</table>
| **(a)** | | Scale 15C(0, 3, 5, 15)
Low Partial Credit:
- Any work of merit in finding Mode or Median.

High Partial Credit:
- Mode or Median correct.

Full Credit:
- Both answers correct without work. |
| | Mode = | 12 |
| | Median = | (24+25)+2=24.5 |
| **(b)** | | Scale 5C(0, 1, 2, 5)
Low Partial Credit:
- Indicates addition of values.(5 + 8

High Partial Credit:
- Sum correct (53) or $$\frac{x}{16}$$, $$\frac{x}{21}$$.
- Count correct (16), (21).

Full Credit:
- Correct answer without work. |
| | sum | 363 |
| | 16 | 16 |
| | =22.6875 |
| | =22.7 |
| **(c)** | | Scale 5C(0, 1, 2, 5)
Low Partial Credit:
- Any effort at ordering results.
- Any correct entry.

High Partial Credit:
- Nine correct entries. |
<p>| | Week 2 | Week 1 |
| | 9 6 | 0 5 8 |
| | 8 8 7 6 6 5 5 2 1 2 2 2 3 |
| | 9 8 7 2 2 0 4 5 7 |
| | 2 3 0 1 2 4 4 |
| | 0 4 4 |
| Key: 1|3 = 13 minutes |</p>
<table>
<thead>
<tr>
<th>Q6</th>
<th>Model Solution – 25 Marks</th>
<th>Marking Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>(i)(ii)</td>
<td>Scale 5D(0, 2, 3, 4, 5)
Low Partial Credit:
• One correct line or angle drawn.
• Any triangle drawn.(Pilot Diagram)
Mid Partial Credit:
• Two correct elements drawn & stops.
High Partial Credit:
• Construction correct.
• Two correct elements and finished correctly/consistently.
• Tolerance : ±0·25 cm , ± 2·5°</td>
</tr>
</tbody>
</table>

![Diagram](image)

AC	4·5 cm
BC	5·4 cm
Sum	9·9 cm

(b) | Answer: Triangle 2
Reason: The sides 6 and 7 are not long enough to reach the side of length 15. | Scale 5B (0, 1, 5)
No Credit:
• Nominates Triangle 1.
Partial Credit:
• Triangle correct but no reason.
• Reason correct but no Triangle.
• Any work of merit leading towards correct triangle or reason. |

(c) | \((x + 1)^2 = 5^2 + x^2\)
\(x^2 + 2x + 1 = 25 + x^2\)
\(2x = 24\)
\(x = 12\) | Scale 15C(0, 3, 5, 15)
Low Partial Credit:
• Pythagoras with some substitution.
• Trial and error to try and find \(x = 12\).
High Partial Credit:
• Pythagoras fully substituted correctly.
Full Credit:
• \(13^2 = 12^2 + 5^2\).
• (5, 12, 13) identified. |
<table>
<thead>
<tr>
<th>Q7</th>
<th>Model Solution – 55 Marks</th>
<th>Marking Notes</th>
</tr>
</thead>
</table>
| (a) | \(165 \times 10^3 \times 10^6\)
\(= 165 \times 10^9\)
\(= 1.65 \times 10^{11}\) | Scale 15B(0, 4, 15)
Partial Credit:
Accept any one of the following:
- \(16.5 \times 10^{10}\)
- \(165 \times 10^9\)
- \(10^9\)
- \(10^6\)
- \(10^3\)
- \(165\,000\,000\,000\)
- \(1.65\) |
| (b) (i) | \(r = 9\,\text{m}\) | Scale 5B(0, 1, 5)
Partial Credit:
- Writes answer as \(\frac{18}{2}\) or similar. |
| (b) (ii) | \(V = \frac{4}{3} \pi r^3\)
\(= \frac{4}{3} \pi (9)^3\)
\(= 972\pi\)
\(= 3053.63\,\text{m}^3\) | Scale 5C(0, 1, 2, 5)
Low Partial Credit:
- Identifies correct volume formula.
- Writes answer from part (b)(i) in this section.
High Partial Credit:
- Formula fully substituted correctly (consistently).
- One error in substitution followed by correct calculation.
- Answer as \(972\pi\).
Note: \(\pi = 3.14\), \((3052.08\,\text{m}^3)\)
\(\pi = \frac{22}{7}\), \((3054.86\,\text{m}^3)\) |
| (c) | \(A = 9 \times 4\pi r^2\)
\(= 9 \times 4 \times \pi \times (9)^2\)
\(= 2916\pi\)
\(= 9160.88\)
\(= 9161\,\text{m}^2}\) | Scale 5C(0, 1, 2, 5)
Low Partial Credit:
- Identifies correct formula.
- Identifies radius correctly or consistently (in this part).
- Indicates multiplication by 9.
High Partial Credit:
- Expression fully substituted.
- S.A. of one sphere correctly calculated.(1018\,m^2)
Note: \(\pi = 3.14\), \((9156\,\text{m}^2)\)
\(\pi = \frac{22}{7}\), \((9165\,\text{m}^2)\) |
(d) (i) \[\text{CSA} = 8 \times 2 \times \pi \times r \times h \]
\[= 8 \times 2 \times \pi \times 1.65 \times 23 \]
\[= 8(75.9\pi) \]
\[= 607.2\pi \]
\[= 1907.57 \]
\[= 1908 \text{ m}^2 \]

Scale 5C(0, 1, 2, 5)

Low Partial Credit:
- Identifies correct formula.
- Identifies \(r = 1.65, \) or \(h = 23. \)
- Indicates multiplication by 8.

High Partial Credit:
- Expression fully substituted.
- Area of one pipe correct.

Note: \(\pi \approx 3.14, \) (1907 m\(^2\))
\[\pi = \frac{22}{7}, \] (1908 m\(^2\))

(d) (ii) \[\frac{3170}{12} = 264.17 \]
\[2 \times \pi \times (1.45) \times h = 264.17 \]
\[h = 28.997 \]
\[h = 29 \]

Scale 15C(0, 3, 5, 15)

Low Partial Credit:
- \(\div 12 \) indicated.
- Identifies correct formula.
- Indicates \(r = 1.45. \)

High Partial Credit:
- Equation fully substituted.

(d) (iii) \[1908 + 3170 + 9161 = 14239 \]
\[14239 \times 70 = \]
\[€996730 \]

Scale 5A(0, 5)
Q8 Model Solution – 50 Marks

Marking Notes

- **Partial Credit:**
 - 100% − (any relevant percentage).
 - Indicates addition of given percentages.

(a)

\[100 - 76 = 24\%\]

- Scale 5B(0, 1, 5)

(b)

<table>
<thead>
<tr>
<th>Activity</th>
<th>Percentage used</th>
<th>Angle (Degrees)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WC flushing</td>
<td>30%</td>
<td>108°</td>
</tr>
<tr>
<td>Personal Washing – Baths and Taps</td>
<td>21%</td>
<td>75·6°</td>
</tr>
<tr>
<td>Personal Washing – Showers</td>
<td>12%</td>
<td>43·2°</td>
</tr>
<tr>
<td>Clothes Washing</td>
<td>13%</td>
<td>46·8°</td>
</tr>
<tr>
<td>Other</td>
<td>24%</td>
<td>86·4°</td>
</tr>
</tbody>
</table>

\[1\% = \frac{46·8}{13} = 3·6°\]

or

\[
\frac{360\°}{100} = 3·6°
\]

- 30% = 30 \times 3·6 = 108°
- 21% = 21 \times 3·6 = 75·6°
- 12% = 12 \times 3·6 = 43·2°
- 24% = 24 \times 3·6 = 86·4°

- Scale 5C(0, 1, 2, 5)

Low Partial Credit:
- Works with 3·6 or similar.
- One correct angle.
- Three incorrect but consistent angles.
- Any use of 360°

High Partial Credit:
- Three correct angles.
- All incorrect consistent angles.
- Correct answer without work.
<table>
<thead>
<tr>
<th>(b)</th>
<th>(ii)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Scale 5C(0, 1, 2, 5)

Low Partial Credit:
- Circle with a sector(s) drawn.

High Partial Credit:
- Any 3 sectors drawn correctly. i.e. (with angle and label indicated).
- All sectors drawn correctly but either angle or label omitted.
John’s weekly household water usage

<table>
<thead>
<tr>
<th>Activity</th>
<th>Water Required</th>
<th>Activities</th>
<th>Number of litres used</th>
</tr>
</thead>
<tbody>
<tr>
<td>One Bath</td>
<td>80 litres</td>
<td>3 Baths</td>
<td>240</td>
</tr>
<tr>
<td>One Shower</td>
<td>125 litres</td>
<td>20 Showers</td>
<td>2500</td>
</tr>
<tr>
<td>Brushing Teeth with Tap Running</td>
<td>6 litres per minute</td>
<td>32 Minutes</td>
<td>192</td>
</tr>
<tr>
<td>One WC Flush</td>
<td>6 litres</td>
<td>60 Flushes</td>
<td>360</td>
</tr>
<tr>
<td>One Use of Washing Machine</td>
<td>45 litres</td>
<td>8 Uses</td>
<td>360</td>
</tr>
<tr>
<td>One Use of Dishwasher</td>
<td>20 litres</td>
<td>7 Uses</td>
<td>140</td>
</tr>
<tr>
<td>Washing One Car with a Bucket</td>
<td>10 litres</td>
<td>1 Wash</td>
<td>10</td>
</tr>
<tr>
<td>Hosepipe</td>
<td>9 litres per minute</td>
<td>15 Minutes</td>
<td>135</td>
</tr>
<tr>
<td>Total Number of litres used</td>
<td></td>
<td></td>
<td>3937</td>
</tr>
</tbody>
</table>

(c)(i)
125 × 20 = 2500
6 × 32 = 192
6 × 60 = 360
45 × 8 = 360
20 × 7 = 140
10 × 1 = 10
9 × 15 = 135
Total = 3937

Scale 5C(0, 1, 2, 5)
Low Partial Credit:
- Indicates one correct water calculation.

High Partial Credit:
- Four correct water calculations.

(c)(ii)
3937 × 52 = 204,724
\[
\frac{204724}{1000} = 204.724
\]
\[
204.724 \times 1.85 = 378.7394
\]
Cost = €378.74

Scale 5C(0, 1, 2, 5)
Low Partial Credit:
- Any use of answer to (c)(i).
- Any ONE of tasks:
 - \(\times\) by 52,
 - \(\times\) 1.85
 - \(\div\) 1000 correct.

High Partial Credit:
- Any TWO of tasks:
 - \(\times\) by 52,
 - \(\times\) 1.85
 - \(\div\) 1000 correct.
<table>
<thead>
<tr>
<th></th>
<th>(378.74 \times 1.135 = \€429.87)</th>
<th>Scale 5A(0, 5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c) (iii)</td>
<td>(\frac{260}{(1.85)(1.135)} = 123.824) (\text{Scale 20C(0, 5, 10, 20)})</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(= 123.824 \cdot 3)</td>
<td>Low Partial Credit:</td>
</tr>
<tr>
<td></td>
<td>(\text{or } = 123.825)</td>
<td>• Any ONE of tasks:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\div 1.85)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\div 1.135)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\times 1000) correct.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>High Partial Credit:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Any TWO of tasks:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\div 1.85)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\div 1.135)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\times 1000) correct</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Formulates correctly with both divisions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(may be done separately)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 123.824 or equivalent and stops.</td>
</tr>
<tr>
<td>Q9</td>
<td>Model Solution – 45 Marks</td>
<td>Marking Notes</td>
</tr>
<tr>
<td>----</td>
<td>--------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>(a)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| (i) | \(F = (4, 1) \) | Scale 5B(0, 1, 5)
Partial Credit:
- One ordinate correct.
- Answer as (1, 4). |
| (a) |
| (ii) | | Scale 5B(0, 1, 5)
Partial Credit:
- Point correct. (No label)
- Point plotted as \((B)\), but not in the correct position.
- Plot and label as \((4, 6)\).
- Any plot North of \(F\).
No Credit:
- All other incorrect points with no labels. |
| (b) | \(d = \sqrt{(-2 - 4)^2 + (7 - 6)^2} \)
\[= \sqrt{37} \]
\[= 6.08 \] | Scale 5C(0, 1, 2, 5)
Low Partial Credit:
- Writes co-ordinates of \(B\) and/or \(Q\).
- Any work of merit.
High Partial Credit:
- Fully correct/consistent substitution without calculation.
- One incorrect substitution with correct calculation.
- One consistent error throughout. |
| (c) | \(T = (-2, 2) \) | Scale 5B(0, 1, 5)
Partial Credit:
- Any work of merit. (Join \(F\) to \(B\))
- One ordinate correct.
- Answer as \((2, -2)\). |
(d) \((-2, 2), (4, 6), (4, 1)\)
\[\downarrow \]
\((-2, 2), (6, 4), (6, -1)\)
Area = \(2 \times \text{Area} \Delta TBF\)
\[2 \times \left(\frac{1}{2} \right) |x_1y_2 - x_2y_1| \]
\[|(6)(-1) - (4)(6)| \]
\[= 30 \]
or
Area = \(a \times h_1 = 5 \times 6 = 30\)

(d) \((-2, 2), (4, 6), (4, 1)\)
\[\downarrow \]
\((-2, 2), (6, 4), (6, -1)\)
Area = \(2 \times \text{Area} \Delta TBF\)
\[2 \times \left(\frac{1}{2} \right) |x_1y_2 - x_2y_1| \]
\[|(6)(-1) - (4)(6)| \]
\[= 30 \]
or
Area = \(a \times h_1 = 5 \times 6 = 30\)

Scale 5D(0, 2, 3, 4, 5)
Low Partial Credit:
- Correct relevant formula identified.
- Triangle co-ordinates identified correctly.
- Triangle translated correctly.
- Works with 5, 6, or 6.08.

Mid Partial Credit:
- Triangle formula fully substituted.
- One error in substitution followed by correct calculation of triangle.

High Partial Credit:
- Area of triangle calculated correctly.
- One error in substitution followed by correct calculation of parallelogram.
- Parallelogram formula fully substituted.
- A correct answer without work.

(e) \(\sin \angle FQB = \frac{\sin 45^\circ}{|FB|} = \frac{5 \times \sin 45^\circ}{|QB|}\)
\[\sin \angle FQB = \frac{5 \times \sin 45^\circ}{6.08} \]
\[\sin \angle FQB = 0.5815 \]
\[|\angle FQB| = 35.6^\circ \]

Scale 20C(0, 5, 10, 20)
Low Partial Credit:
- Correct relevant formula.
- Work of merit on diagram.

High Partial Credit:
- Sine rule fully substituted.
- \(|\angle BQF| \)calculated with one incorrect substitution.
- \(|\angle QBF| = 99.47^\circ\).
- Incorrect calculator mode. (once only)
 Radian = 0.8
 Gradian = 35.9
- Correct answer without work.

No Credit:
- Treats as right-angled or isosceles Triangle.
Marcanna breise as ucht freagairt trí Ghaeilge

(Bonus marks for answering through Irish)

Ba chóir marcanna de réir an ghnáthráta a bhronadh ar iarrthóirí nach ngnóthaíonn níos mó ná 75% d’iomlán na marcanna don pháipéar. Ba chóir freisin an marc bónaísin a slánú síos.

Déantar an cinneadh agus an ríomhaireacht faoin marc bónaísin i gcás gach páipéir. Is é 5% an gnáthráta agus is é 300 iomlán na marcanna don pháipéar. Mar sin, bain úsáid as an ghnáthráta 5% i gcás iarrthóirí a ghnóthaíonn 225 marc nó níos lú, e.g. 198 marc × 5% = 9·9 ⇒ bónaí = 9 marc.

Má ghnóthaíonn an t-iarrthóir níos mó ná 225 marc, ríomhtar an bónaísin de réir na foirmle [300 – bunmharc] × 15%, agus an marc bónaísin a slánú síos. In ionad an ríomhaireachta, is féidir úsáid a bhaint as an tábla thíos.

<table>
<thead>
<tr>
<th>Bunmharc</th>
<th>Marc Bónais</th>
</tr>
</thead>
<tbody>
<tr>
<td>226</td>
<td>11</td>
</tr>
<tr>
<td>227 – 233</td>
<td>10</td>
</tr>
<tr>
<td>234 – 240</td>
<td>9</td>
</tr>
<tr>
<td>241 – 246</td>
<td>8</td>
</tr>
<tr>
<td>247 – 253</td>
<td>7</td>
</tr>
<tr>
<td>254 – 260</td>
<td>6</td>
</tr>
<tr>
<td>261 – 266</td>
<td>5</td>
</tr>
<tr>
<td>267 – 273</td>
<td>4</td>
</tr>
<tr>
<td>274 – 280</td>
<td>3</td>
</tr>
<tr>
<td>281 – 286</td>
<td>2</td>
</tr>
<tr>
<td>287 – 293</td>
<td>1</td>
</tr>
<tr>
<td>294 – 300</td>
<td>0</td>
</tr>
</tbody>
</table>
Blank Page